Phaseolus vulgaris

Common NameDry Bean
AbbreviationP. vulgaris

Dry Bean are high in starch, protein and dietary fiber, as well as being an excellent source of iron, potassium, selenium, molybdenum, thiamine, vitamin B6 and folate. Dry beans take longer to cook then most pulses, although cooking time can be shortened by soaking dried beans before cooking. Dry Bean is a highly variable species with growth habits ranging from bush varieties growing 20-60cm tall to vine varieties growing 2-3m long. While dry bean varieties range in growth habit all have characteristic green or purple alternate leaves and long pods containing 4-6 kidney-shaped seeds.

Breeding at the University of Saskatchewan

Market Classes: pinto, black, yellow, navy, red, pink, great northern, carioca, flor de junio, flor de mayo

Breeding Objectives: Size, shape and colour appropriate for market class, early maturity and, of course, yield. Marker-assisted selection for CBB and anthracnose tolerance


Genetic variability underlies all breeding efforts. Sometimes you have to go outside the primary genepool to find increased levels of variability. Tepary bean (Phaseolus acutifolius) is known to contain genes for traits of interest to common bean breeders such as disease resistance, increased micronutrients, and tolerance to abiotic stress (heat, cold, drought). Interspecies hybridization between tepary and common bean has led to the development of introgression lines which are being assessed for various traits. Lines with interesting phenotypes may be used as parents in the regular breeding program.


Post harvest darkening (PHD) is a phenomenon that occurs in seed coats during storage under less than ideal conditions (heat, humidity and light). PHD is controlled by at least two unlinked but epistatic genes: J and SD. All jj plants have non-darkening seeds; JJsdsd plants have slow-darkening seeds and JJSDSD plants have regular darkening seeds (Elsadr et al. 2011. Theor. Appl. Genet. DOI 10.1007/s00122-011-1683-8).

SNP marker development: 454-based sequencing of multiple genotypes has led to the development of a 768-SNP GoldenGate assay for P. vulgaris and another for P. acutifolius that is being used to genotype various populations.

Germplasm Data
The following germplasm data is currently available:
Stock TypeCount
Single Cross1,856
Triple Cross1,078
Multiple Cross897
Double Cross105
Sequence & Variant Data
The following sequence and variant data are currently present:
Feature TypeCount
2015 to 2017
Stone seeds, which are seeds that do not absorb water, are considered a negative seed quality characteristic because they need to be removed before commercial processing. A high physical dormancy at the end of seed development is found to be the cause of this issue, but it is not known how or when it develops. This project will focus on attempting to determine when the seeds begin to develop physical dormancy, and also how to avoid hard seededness through harvest times.
2013 to 2016
As production of the dry bean is moving towards short season growing regions such as Alberta and Saskatchewan, it is becoming increasingly important to find a way to develop abiotic stress tolerances for the dry bean. Through the incorporation of genes from other species, the stress tolerance capabilities of the dry bean will increase, making it less sensitive to its surrounding climate. The tepary bean was decided upon as the best genetic donor for improvement to the dry bean, and is now being evaluated in Saskatchewan and its international partners.
2012 to 2015
This group is involved in a wide range of biotechnology projects that accelerate the legume breeding process. Double-haploid technology has been achieved in both chickpea and field pea by the CDC group in collaboration with colleagues in France and Australia. Efforts are underway to adapt this technology to lentil. Improving efficiency and integrating these techniques into routine breeding programs to enhance genetic gain are important long-term goals.
2010 to 2012
The nutritional value of pea, lentil, chickpea and dry bean grains are highly important for human health. Biofortification, enriching the nutritional contribution of staple crops through plant breeding, is one option that is now widely discussed in the fields of nutrition and public health at the national and international levels.
2009 to 2011
Eight germplasm were chosen for this project:CDC WM-2, BAT 93, Expresso, Higuera-E, Jalo EEP-558, PI 430219, SMARC1N-PN1, and W6-15578. Tissue was collected from multiple plants at various developmental stages for RNA extraction which led to the generation of 3'-anchored cDNA libraries using the method described in Parkin et al., 2010. Each line was sequenced using the Roche 454 Titanium sequencing protocol. Sequencing reads were aligned directly to the Phaseolus vulgaris genomic build v0.9 using GMap. Then loci which were polymorphic between at least two of the lines were identified resulting in 133,108 SNPs. All SNPs were re-mapped to the published genome assembly 1.0 (; Schmutz et al. 2014).
Preparation of EST data: Sequences were extracted from dbEST and were subjected to quality control screening (vector, E. coli, polyA, T, or CT removal, minimum length = 100 bp, < 3% N). Preparation of transcript (ET) database: All sequences from the appropriate divisions of GenBank (including RefSeq) were extracted. Non-coding sequences were discarded and cDNAs and coding sequences from genomic entries were saved. Sequences and related information (e.g. PubMed links) are stored in the qcGene database (qcGene). Assembly: Cleaned EST sequences and non-redundant transcript (ET) sequences were combined. Using the Paracel Transcript Assembler Program, sequences were assembled into contigs. TCs are consensus sequences based on two or more ESTs (and possibly an ET) that overlap for at least 40 bases with at least 94% sequence identity. These strict criteria help minimize the creation of chimeric contigs. These contigs are assigned a TC (Tentative Consensus) number. TCs may comprise ESTs derived from different tissues. The best hits for TC's were assigned by searching the TC set against a non-redundant amino acid database(nraa) using BLAT. The top five hits based on score were selected and displayed for each TC. Caveats: TCs are only as good as the ESTs underlying them; there may be unspliced or chimeric ESTs and thus TCs. There is still redundancy in the TC set because sequences must match end to end and at a certain percent identity to be combined. Directionality of the TCs should not be assumed. Not all TCs contain protein-coding regions.
In many important crop species, the strategy of single seed descent (SSD) enables only 2 - 3 generations per year. Approximately eight generations of inbreeding are required before plants are mostly homozygous (‘true breeding’). This creates a ‘bottleneck’ in cultivar development. Hence, the purpose of this project is to develop a rapid generation cycling technique for CDC pulse crops in order to speed up the breeding process by using in vitro flowering technique.