Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum

Overview
TitleIdentification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum
AuthorsBhadauria Vijai, Bett Kirstin E, Zhou Tengsheng, Vandenberg Albert, Wei Yangdou, Banniza Sabine
TypeJournal Article
JournalBMC genetics
Volume14
Publication ModelElectronic
Language Abbreng
Publication Date2013
DOI10.1186/1471-2156-14-31
eISSN1471-2156
Elocation10.1186/1471-2156-14-31
ISSN1471-2156
Journal AbbreviationBMC Genet.
Journal CountryEngland
LanguageEnglish

Abstract

<p><b>BACKGROUND</b></br>Anthracnose of lentil, caused by the hemibiotrophic fungal pathogen Colletotrichum truncatum is a serious threat to lentil production in western Canada. Colletotrichum truncatum employs a bi-phasic infection strategy characterized by initial symptomless biotrophic and subsequent destructive necrotrophic colonization of its host. The transition from biotrophy to necrotrophy (known as the biotrophy-necrotrophy switch [BNS]) is critical in anthracnose development. Understanding plant responses during the BNS is the key to designing a strategy for incorporating resistance against hemibiotrophic pathogens either via introgression of resistance genes or quantitative trait loci contributing to host defense into elite cultivars, or via incorporation of resistance by biotechnological means.</p><p><b>RESULTS</b></br>The in planta BNS of C. truncatum was determined by histochemical analysis of infected lentil leaf tissues in time-course experiments. A total of 2852 lentil expressed sequence tags (ESTs) derived from C. truncatum-infected leaf tissues were analyzed to catalogue defense related genes. These ESTs could be assembled into 1682 unigenes. Of these, 101 unigenes encoded membrane and transport associated proteins, 159 encoded proteins implicated in signal transduction and 387 were predicted to be stress and defense related proteins (GenBank accessions: JG293480 to JG293479). The most abundant class of defense related proteins contained pathogenesis related proteins (encoded by 125 ESTs) followed by heat shock proteins, glutathione S-transferase, protein kinases, protein phosphatase, zinc finger proteins, peroxidase, GTP binding proteins, resistance proteins and syringolide-induced proteins. Quantitative RT-PCR was conducted to compare the expression of two resistance genes of the NBS-LRR class in susceptible and partially resistant genotypes. One (contig186) was induced 6 days post-inoculation (dpi) in a susceptible host genotype (Eston) whereas the mRNA level of another ( LT21-1990) peaked 4 dpi in a partially resistant host genotype (Robin), suggesting roles in conditioning the susceptibility and conferring tolerance to the pathogen, respectively.</p><p><b>CONCLUSIONS</b></br>Data obtained in this study suggest that lentil cells recognize C. truncatum at the BNS and in response, mount an inducible defense as evident by a high number of transcripts (23% of the total pathogen-responsive lentil transcriptome) encoding defense related proteins. Temporal expression polymorphism of defense related genes could be used to distinguish the response of a lentil genotype as susceptible or resistant.</p>

Citation

Bhadauria V, Bett KE, Zhou T, Vandenberg A, Wei Y, Banniza S. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC genetics. 2013; 14:31.

Related Species
Related Species: 

Lentil (Lens culinaris Medik.) is an important pulse crop with annual production of 3-4 Mt across 70 countries (Cubero et al. 2009. DOI 10.1079/9781845934873.0000; pg. 13). Lentils are a good source of protein, carbohydrates, micronutrients and vitamins for human nutrition and is consumed in more than 120 countries. Furthermore, their small seed size and flat shape make them relatively quick cooking and easily decorticated compared to most other grain legumes (Sharpe et al. 2013. BMC Genomics. DOI 10.1186/1471-2164-14-192). The Lentil plant has a bushy growth habit with a height of about 40 cm; the seeds are lens-shaped and usually grow two per pod. ... [more]

 
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PubMedPMID:23631759
Research Area
Research Area: 
Pathology

In the Pulse Crop Pathology Group we are interested in the biology of fungal and bacterial pathogens and their interaction with the legume host plants. The ultimate goal is to gain a better understanding of strategies employed by these pathogens to successfully invade and colonize pulse crops, and to explo ... [more]